Carter lab publications are really the result of excellent research by our students. Undergraduate or high school students are underlined in the following citations.
36. Soto, P., Carter, A.R., Deligkaris, C., Gül, D., Hamadani, K.M., Knight, J., Matulis, D., Ozturk, T.N., et al. 2022. Perspectives on How 1.5 Years of the COVID-19 Pandemic Have Impacted Biophysicists at Primarily Undergraduate Institutions. The Biophysicist. 3(1):75–84. DOI: 10.35459/tbp.2021.000187.
35. Hardy, I.P., Idrovo, J., Oo, D., Jones, K.M., Ma, Y., Choi, Y.J. & Carter, A.R. 2022. The replacement of nucleosome core particles by protamine. Biophysical Journal. 121(3):211a–212a. DOI: 10.1016/j.bpj.2021.11.1682.
34. Fu, L., Jones, K., Ma, Y., Idrovo, J.M., Hardy, I. & Carter, A. 2022. Direct replacement of histones by protamine. Biophysical Journal. 121(3):210a–211a. DOI: 10.1016/j.bpj.2021.11.1676.
33. Kuntz, V., McMillan, R.B., Matej Devenica, L., Bediako, H. & Carter, A. 2022. Non-Uniform spatial distribution of protamine induced DNA looping. Biophysical Journal. 121(3):62a–63a. DOI: 10.1016/j.bpj.2021.11.2379.
32. Liu, M.L., McMillan, R.B., Oo, D.W. & Carter, A.R. 2022. Theoretical model for DNA looping by positively charged condensing agents. Biophysical Journal. 121(3):211a. DOI: 10.1016/j.bpj.2021.11.1678.
31. Oo, D., Roscoe, D.M., Hardy, I., Balaji, A. & Carter, A. 2022. DNA folding by positively charged condensing agents. Biophysical Journal. 121(3):211a. DOI: 10.1016/j.bpj.2021.11.1681.
30. Golden, G.N., Carter, A. & Balaji, A. 2022. Construction of a centrifugal force microscope. Biophysical Journal. 121(3):417a–418a. DOI: 10.1016/j.bpj.2021.11.678.
29. McMillan, R.B., Kuntz, V.D., Devenica, L.M., Bediako, H. & Carter, A.R. 2021. DNA looping by protamine follows a nonuniform spatial distribution. Biophysical Journal. 120(12):2521–2531. DOI: 10.1016/j.bpj.2021.04.022.
28. McMillan, R.B., Bediako, H., Matej Devenica, L., Ma, Y.E., Roscoe, D.M. & Carter, A.R. 2021. DNA Toroids form via a Flower Intermediate. Biophysical Journal. 120(3):34a. DOI: 10.1016/j.bpj.2020.11.459.
27. Jones, K.M., Ma, Y., Fu, L., Idrovo, J.M. & Carter, A.R. 2021. Characterizing Partial Histone Wrapping States and the Histone-to-Protamine Transition in Sperm. Biophysical Journal. 120(3):317a. DOI: 10.1016/j.bpj.2020.11.2007.
26. Carter, A.R. 2021. One Hundred Years Later, Introductory Labs Are Poised for Change. The Physics Teacher. 59(2):97–99. DOI: 10.1119/10.0003460.
25. Choi, Y.N., McMillan, R.B. & Carter, A.R. 2021. DNA Folding by the SARS-CoV-2 Nucleocapsid Protein. Biophysical Journal. 120(3):34a. DOI: 10.1016/j.bpj.2020.11.462.
24. Ukogu, O.A., Smith, A.D., Matej Devenica, L., Bediako, H., McMillan, R.B., Ma, Y.E., Balaji, A., Schwab, R.D., et al. 2021. Protamine Loops DNA in Multiple Steps. Biophysical Journal. 120(3):316a–317a. DOI: 10.1016/j.bpj.2020.11.2004.
23. Roscoe, D.M., Balaji, A., Matej Devenica, L. & Carter, A.R. 2021. DNA Folding by Multivalent Cations. Biophysical Journal. 120(3):34a. DOI: 10.1016/j.bpj.2020.11.458.
22. McMillan, R.B., Bediako, H., Devenica, L.M., Ma, Y.E., Roscoe, D.M. & Carter, A.R. 2021. DNA toroids form via a flower intermediate. DOI: 10.48550/ARXIV.2101.05392.
21. McMillan, R.B., Kuntz, V.D., Devenica, L.M., Bediako, H. & Carter, A.R. 2021. DNA looping by protamine follows a nonuniform spatial distribution. (Preprint). Biophysics. DOI: 10.1101/2021.01.12.426418.
20. O. A. Ukogu, A. D. Smith, L. M. Devenica, H. Bediako, R. McMillan, Yuxing E. Ma, A. Balaji, R. D. Schwab, S. Anwar, M. Dasgupta, and A. R. Carter, “Protamine progressively folds DNA before looping.” Nucleic Acids Research (Volume 48, Issue 11, 19 June 2020, Pages 6108–6119, https://doi.org/10.1093/nar/gkaa365). PDF
19. A. R. Carter, “100 years later, introductory labs are poised for change.” The Physics Teacher (accepted). PDF
18. A. R. Carter, “On building a research lab, not starting it.” American Journal of Physics, 87:413-414 (2019). PDF
17. A. R. Carter, “Case study on how to develop 3D labs with theoretical, experimental, and computational goals.” 2018 BFY Proceedings, doi:10.1119/bfy.2018.pr.002 (2018) PDF
16. L. M. Devenica, B. S. Grimm, T. Hultum, and A. R. Carter, “Progress on an optical trapping assay to measure DNA folding pathways in sperm.” Proceedings of SPIE, 10347 (2017). PDF
15. A. D. Smith, O. A. Ukogu, L. M. Devenica, E. D. White, and A. R. Carter, “Optical methods for measuring DNA folding.” Modern Physics Letters B, 31:1730001 (2017). PDF
14. S. R. Okoniewski, A. R. Carter, and T. T. Perkins, “A Surface-Coupled Optical Trap with 1-bp Precision via Active Stabilization.” Methods in Molecular Biology, 1486:77-107 (2017). PDF
13. E. L. Troconis, A. J. Ordoobadi, T. F. Sommers, R. Aziz-Bose, A. R. Carter, and J. G. Trapani, “Intensity-dependent timing and precision of startle response latency in larval zebrafish.” Journal of Physiology, 595(1):265-282, DOI: 10.1113/JP272466 (2017). PDF
12. A. R. Carter, M. H. Seaberg, H. Fan, A. M. Noronha, C. J. Wilds, H. Li, and T. T. Perkins, “Sequence-dependent nanometer-scale conformational dynamics of individual RecBCD-DNA complexes.” Nucleic Acids Research, 44(12):5849-60 (2016). PDF
11. L. M. Devenica, C. Contee, R. Cabrejo, E. F. Deveney, and A. R. Carter, “Biophysical Measurements of Cells, Microtubules, and DNA with an Atomic Force Microscope.” American Journal of Physics, 84:301 (2016). PDF
10. E. A. Kane, M. Gershow, B. Afonso, I. Larderet, M. Klein, A. R. Carter, B. L. de Bivort, S. G. Sprecher, and A. D. T. Samuel, “Sensorimotor structure of Drosophila larva phototaxis.” PNAS, 10.1073/pnas.1215295110 (2013). PDF
9. M. A. Catipovic, P. M. Tyler, J. G. Trapani, and A. R. Carter, “Improving the quantification of Brownian motion.” American Journal of Physics, 81:485 (2013). PDF
8. A. R. Carter, “Evolution of the significant figure rules,” The Physics Teacher, 51:340 (2013). PDF PDF with Supplemental Information
7. F. B. Shipley and A. R. Carter, “Back-scattered detection yields viable signals in many conditions.” Optics Express, 20:9581 (2012). PDF
6. T. T. Perkins, G. M. King, A. B. Churnside, and A. R. Carter, “Ultrastable Atomic Force Microscopy using Laser-Based, Active Noise Cancelation.” Conference on Lasers and Electro-Optics, OSA Technical Digest, Optical Society of America, CTuOO3 (2010). Read Online
5. A. R. Carter, Y. Seol, T. T. Perkins, “Precision Surface-Coupled Optical-Trapping Assay with One-Basepair Resolution.” Biophysical Journal 96:2926 (2009). PDF
4. G. M. King, A. R. Carter, A. B. Churnside, L. Eberle, T. T. Perkins, “Ultrastable Atomic Force Microscopy: Atomic-Scale Stability and Registration in Ambient Conditions.” Nano Letters 9:1451 (2009). PDF
3. A. B. Churnside, G. M. King, A. R. Carter, and T. T. Perkins, “Improved performance of an ultrastable measurement platform using a field programmable gate array for deterministic, real-time control.” Proceedings of SPIE 7042:704205 (2008). PDF
2. A. R. Carter, G. M. King, T. T. Perkins, “Back-scattered detection provides atomic-scale localization precision, stability, and registration in 3D.” Optics Express, 15:13434 (2007) PDF
1. A. R. Carter, G. M. King, T. Ulrich, W. Halsey, D. Alchenberger, T. T. Perkins, “Stabilization of an optical microscope to 0.1 nm in 3D.” Applied Optics, 46:421 (2007). PDF